The rising sea in applied mathematics

The rising sea refers to a particular approach to mathematical problem-solving, in which many small, apparently trivial steps are taken until the solution of a problem becomes itself trivial. It was poetically introduced by Alexander Grothendieck in his beautiful, auto-psychoanalytic Récoltes et Samailles, in which he imagines the mathematical problem as a landmass being swallowed as “the sea advances insensibly in silence”. This makes me think of Xerxes, all-powerful over humans, helpless against the power of the sea. Grothendieck views the mathematician and the problem as complimenting each other, the mathematician using the problem’s natural structure in its solution, rather than striking it with a foreign, invasive method.

(Sadly I’ve only read the small part of Récoltes et Samailles that is translated to English, and that is hard to find. The version which I originally read has disappeared from the internet, and I expect this link to become dead too, so now I’ve kept an offline version to be safe.)

Continue reading “The rising sea in applied mathematics”

Breaking the rules

As might be expected, the rules of the game are an important concept in game theory. But the way that game theory treats its all-important rules is very un-subtle: it is firmly built into the epistemic foundations that the rules are common knowledge, which makes it extremely difficult to talk about breaking the rules. If any player breaks the rules, or even if any player suspects another player of breaking the rules (up to any level of epistemic reasoning), you are simply outside the scope of your model. Of course the possibility of breaking any individual rule, and the consequences for doing so, can be manually built into your game, but then it is unclear whether it can reasonably be called a ‘rule’ any more.

Continue reading “Breaking the rules”

On compositionality

This post is copied (with some small modifications and additional comments) from section 0.4 of my Ph.D. thesis, Towards compositional game theory. It is loosely based on a talk I gave at Logic for Social Behaviour 2016 in Zürich.

The term compositionality is commonplace in computer science, but is not well-known in other subjects. Compositionality is the principle that a system should be designed by composing together smaller subsystems, and reasoning about the system should be done recursively on its structure. When I thought more deeply, however, I realised that there is more to this principle than first meets the eye, and even a computer scientist may not be aware of its nuances.

Continue reading “On compositionality”